D-A126 683

UNCLRSSIFIED

FINITE ELEMENT METHODS: PRINCIPLES Fonrruséglgstzcrron o

) MARYLAND UNIV COLLEGE PARK LAB FOR NUM
RNHLVSIS D N ARNOLD ET AL. FEB 83 BN-997
N@8814-77-C-8623

11




PRI S * S S A i Jatege ary bt ) A DA B S A WAl Tl “Thad i | i Nl i Thdt ) il ll v M ot
Y AR R AR LA » o 3 - o]
3 Yo Pt G S O A A A A ARSI A S AL IR AT AT S S PRI
e B P L LIS Pl w LT S SR SOOI O SN AME S O SRS

TR
D
o
T
vy
“ g >t
- [

O =R

a2 B22 . S )
= | oo o

3.6 i . .
N - - '

e 20 - s

o

I
I

.

CEEEEERE R

—
.
—
EF
[4
(13

= | 3 a
E—= F
1.25 {ji 1.4 oo
=22 {2 e |
1
MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A
‘,
! [
- .:4
‘.
(
«' <1
p - - - -
9
al B 3 e e Zea - - ~ PRI N
' L C P TP R Y R S e X PPy Y _ad




INSTITUTE FOR PHYSICAL SCIENCE |
AND TECHNOLOGY

Laboratory for Numerical Analysis

Technical Note BN-997

FINITE ELEMENT METHODS: PRINCIPLES FOR THEIR SELECTION

by

A 126683

D. N. Arnold

I. Babu¥ka | DTIC |

J. Osborn ' ELECTE
APR 1 11983

3
¢

| DISTRIBUTION STATEMENT A

Approved for public release) D ’
Distribution Unlimited

February 1983

— )

OTC FLE COPY

UNIVERSITY OF MARYLAND 1




et A el
)
Coe

PRI A Ao ow v S e nan
R A

Encl (1)

D) .'-l . *
Ry Oy
38 XaRe
RATR N
,
:
g

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
[T, REPORT NUMBER 2. OOVY ACCESSION NOJ J- RECIPIENT'S CATALOG NUMBER -
Technical Note BN-997
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED
FINITE ELEMENT METHODS: PRINCIPLES FOR THIER final life of the contract
SELECTION.
6. PERPORMING ORG. REPORT NUMBER
7. AUTHOR(s) §. CONTRACT OR GRANY NUM O]
D. N. Arnold, I. Babu¥ka, and J. Osborn ONR N0O0014-77-C-0623
e — . A . 1
s pnr?nmno ORGANIIA'NO.N NAME AND ADORESS 0 RROGRAM ¢ l.L‘lngchTNzl:‘o'J.lE: TASK
Institute for Physical Science & Technology
University of Maryland
College Park, MD 20742
11, CONTROLLING OFFICE NAME AND ADODRESS 12. REPOART DATE
Department of the Navy February 1983
Office of Naval Research 13. NUMBER OF PAGES
Arlington, VA 22217 67

T4 MONITORING AGENCY NAME & ADORESS(I7 different frem Conirelling Offfcs) | 15. SECURITY CLASS. (of thia repert)

UNCLASSIFIED

D "gg"!'{.a‘ S3IFICATION/ COWNGRADING ‘
HEOULE

6. DISTRIBUTION STATEMENT (of this Report)

-

Approved for public release: distribution unlimited

17. DISTRIBUTION STATEMENT (of the sbetrsct entered In Block 20, ! different frem Repert)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse aide iIf necessary and identify by block number)

\-.

o

20. A'lTRAC"I’_(Con'umo on reverae side If neceseary and identity by No.ck number)
. ‘nciples for the selection of a finite element method for a particular

problem are discussed. These principles are stated in terms of the notion of
approximability, optimality, and stability. Several examples are discussed
in detail as illustrations. Conclusions regarding the selection of finite
element methods are summarized in the final section of the paper.

DD . 32:'1” 1473 EDITION OF | NOV 6318 OBSOLETE

5 N O102-LF-014- 6601 SECURITY CLASSIFICATION OF THIS PAGE (When Data Bntered)

PO Sy W o

T

PR GrOr BV S Y |




Finite Element Methods: Principles for Their Selection

by
D. N. Arnoldl’4
I. Babu§ka1’2’3
J. Osbornl’a
Lmyn For
NTIS GRagI r |
DTIC TAB 0]
Unannounced ] Technical Note BN-997
Justification
By __
| Distribution/

Availability 66565

Avail and/or
Dist Special

A

1Department of Mathematics, University of Maryland, College Park, MD

2Institute for Physical Science and Technology, University of Maryland,
College Park, MD

3I’artially supported by the Office of Naval Research under contract
N00014-77-C-0623

4Part1a11y supported by the National Science Foundation under grant
MCS-78-02851

DISTRIBUTION STATEMENT A

Approved for public release)
Disil_i_b_ution Unlimited

ettt it lieliitcctietnloincttmats sttt i . it




i . - AN &l e g i aeen o . -
e R R NN L U O SN A A
- - - - L B e el

Abstract

Principles for the selection of a finite element method for a particular

problem are discussed. These principles are stated in terms of the notion of

h' approximability, optimality, and stability. Several examples are discussed
b
R in detail as illustrations. Conclusions regarding the selection of finite

element methods are summarized in the final section of the paper.




1. Introduction

Larger and larger classes of finite element methods are becoming
available for the approximate solution of engineering problems and the
selection of a method for a particular problem is an increasingly important
question. It is the purpose of this paper to discuss some principles for
the selection of finite element methods.

A finite element method or, more generally, a variational method is
a discretization of a variational (weak) formulation of the problem under
consideration. More specifically, it consists of several items.,

1) Selection of a variational (weak) formulation of the original

problem. There are, in fact, many such formulations and their
choice can significantly affect the resulting finite element
method. The choice of a variational formulation leads to the
choice of a bilinear form.

2) Selection of a trial space. The trial space consists of those

elements (shape functions) with which the solution will be
be approximated. It is thus chosen so as to provide good
approximation properties. The choice of trial space depends,

of course, on the set of possible exact solutions under consideration.

3) Selection of a test space. This space is chosen so that the

approximate solution is easily computed and so that the error
is comparable with the error in the best possible approximation
achievable by elements in the trial space.

4) Selection of the norm. The selection of the norm relates to the

measure of acceptability of the approximate solution and thus
depends on the goals of the computation.

5) Selection of the extension procedure. This procedure describes the

manner in which the trial and test spaces (and possibly the
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T variational formulation are changed) when the desired accuracy is uot
(: achieved and the approximate solution has to be improved.

{i The selection of a method for a specific problem depends on the goals

of the computation, implementational questions, and other practical circum~
stances. Selection and comparison of methods is not a simple task and in
order to find "optimal' methods it is important to clarify as much as

possible the basic notion of a variational method and criteria by which

Lt

different methods can be compared. It is necessary to emphasize that selection

of methods depends on many factors and will always have a relative character.

a0 per
R

The influence of computer technology on the selection process could be

especially important.

Let us turn now to a brief outline éf the paper. The paper is partially
expository in nature, with the mathematical results having primarily an illustra-

'} tive as opposed to a practical importance.
55 Section 2 deals with the principle ideas of a variational method.
Subsection 2.1 introduces the notions of simple variational, variational,
directed variational, and computational variational methods, concepts
we view as important for the discussion of the multiplicity
of methods considerad today in theory and practice. Subsection 2.2 discusses
approximability and optimality. Approximability refers to the quality of best
approximation achievable Qy the trial space.(see 2) above) and optimality
refers to the comparison of the approximation yielded by the finite element
solution and the best possible approximation achievable by elements in the
trial space (see 3)above). In Subsection 2.3 optimality is elaborated on and
related to stability. We introduce the stability constant which is often

relatively easy to estimate and in terms of which one can estimate the optrimality

constant. The ideas introduced in Section 2 are illustrated by a series of examples.




In Section 3 we consider a further example of a finife.element methods
which illustrates several of the ideas introduced in Section 2.

In Section 4 we summarize those conclusions regarding the selection
of finite element methods that can be drawn from the discussion in
Sections 2 and 3.

Throughout the paper we will use certain function spaces. For an

interval I = (a,B) ,

-
[+

] |u|pdx <w} ,1gp<o
1

L(I)=L =

P( ) P

{u : u bounded} , p =,

On Lp(I) we use the norm

([ lalPa)? 1 cp <
I
jul, =
p ess suplu(x)| , p=w.
x€1
Hk(I) = Hk is the usual Sobolev space of functions whose first k derivatives
are in LZ(I) . On this space we use the norm
k 2 1/2 . j
_ (3] / 31 _ alu
,ul k - Z ,u IL (1) s U = i
3 H (1) j=0 2 dx

£ = .
By C (I) we denote the space of functions whose first [ derivatives are

3
& continuous on I = [a,B] with the norm
¢ 5]
ol = 1 maxlul ol
k'. C (I) j=0 er
L

(Lp)2 will denote the spaces of pairs of functions in L

. .
ol o il o s s A PP |




2. Variational Methods

2.1. Fundamental Ideas

Throughout this paper we suppose we are interested in approximating
the unique solution u, of some problem by a variational method of
discretization. (It is not necessary to give a precise statement of the
problem here.) In this section we shall formulate some important ideas
which will allow us to discuss variational methods of discretization.

A simple variational method is specified by a linear vector space #,

a finite dimensional subspace S ¢ H called the trial space, a second
finite dimensional space V of the same dimension as S called the test

space, and a bilinear form B defined as H x V . We assume that B(s,v)

is regular on S x V , i.e., we assume that for every 0 # s € S there is
a v €V such that B(s,v) # 0 . This condition is referred to as

regularity since, if {¢,}F

N
1Yi=1 and {\yi}i=l are bases for § and V ,

respectively, then B(s,v) 1is regular if and only if the matrix B(wj,wi)
is regular (or invertible). We will denote the simple variational method
by the four-tuple M = (H,S,V,B).

M 1is used to determine an approximate solution uO(M) € S ,called

the M-approximate solution, to the exact solution ug » which is assumed to

lie in H , by requiring that

(2.1.1) B(uy(M),v) = B(uy,v)

holds for all v € V . Using the hases {wi} oend {Wi} and writing
N

uO(M) = chwj , we see that (2.1.1) is equivalent to the system of equations
i

z B(mj"yi)ci = B(on\l’i) ’ i=1,...,N.
=1 R

J

Since the matrix of this system is regular, the coefficients Cj and hence

[ T s
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the approximate solution uo(M) is uniquely determined. 1In this way we
associate to each u € H the M-approximate solution u(M)V which is also

denoted by Pu or P(M)u . Note that Ps = s for any s € S and there-

fore that P 1is a projection. We thus see that to any simple variational

method we uniquely assoclate the projection P =P(M) of H onto S .

Often we will write M(S,V) instead of M to underline the dependence

S and V , especially if the H and B under consideration are clear

from the context. Likewise, instead of P(M) and u(M) we write P(S,V)

and u(S,V) , respectively,

The space H must be known, a priori, to contain the exact solution

u, . Furthermore, the bilinear form B must be such that B(uo,v)

can
0

be computable from the data that determines the exact solution u, , without

0

knowing u, explicitly. Let us note that in this section we are not

discussing the questions of how well the M-approximate solution uO(M)

approximates the exact solution u, . This is addressed in the next section.

0

Since the exact solution could, a priori, be any element in H we will often
denote it by u .

We now formulate some typical examples; these will be elaborated on in
the remaining sections.

Example 2.1.1.

Let
a2y, (x)
(2.1.2) A =
a1 () 2y, (x)
be a matrix defined in I = (-n,w) , where aij € Lm(l) , and A is

regular (invertible) with
1 c11 (¥ ey ()

A = Y
€y (x) ey ()

dem e el . i
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6
where cij € L_(I) . We then consider the problem of finding

u = @, eoT sueh that
(2.1.3) . A(x)u(x) = £(x)

for a given f(x) = (f[l](:'c),flzl(x))T , where f € (L2)2 .

A simple variational method M = (H,S,V,B) is determined by the

choices
H= @,an?,

n n
S=V= {(5[1],5[2]):s[k] = z c[k]sin jx + z d!k]cos ix , c!k]

3= j=0 3 3

and dgk] real,k = 1,2} ,
T
(2.1.4) B(u,v) = Jﬂ v Au dx .
-1

S and V have the same dimension, namely N = 4n + 2 . We will later
show that B 1is regular on S X V under certain additional assumptions.

For any £ € (L,(I))° , the exact solution u of (2.1.3) lies in (L,(D))°
and B(u,v) is computable in terms of f without knowing u since

we have

(We note that we could also take H = (LI(I))Z and allow f € (Ll(I))%
which by our definition would mean a different simple variational method.)

Example 2.1.2

Consider the problem of determining u(x) so that

- u"(x) f(x) , x €1 = (-1,1)
(2.1.5)

u(-1)

u(l) = 0




where £ € LZ(I) .

a) Let
' °1 1 |
H= Hl =H = {u(x):u € H(I) , u(-1) = u(l) = 0} ,
S =V = {s is a polynomial of degree n, s(-1) = s(1) = 0} .

For f € LZ(I) , the exact solution u of (2.1.5) 1lies in Hl .

The dimension of S and V is n -1 . Finally we take

1
B(u,v) = - J uv'dx .
-1

It is easy to see that B is bilinear on %_X V , is regular on S x V |

and that

1
B(u,v) = J fv dx
-1

for any v € V , where u 1is the exact solution of (2.1.5).

b) We can also take H = HZ = LZ(I) . B(u,v) 1is still defined and
bilinear in H2 X V . This choice for H 1is important if f is, for example,
a dipole, i.e., the derivative of the Dirac function. In this situation
u will be in H2 but not in H1 . Thus the choice H = H2 allows us to
treat (2.1.5) with f a dipole, Note that computationally the methods
are identical, but according to our definition we are dealing with two

different simple variational methods, namely (Hl,S,V,B) and (HZ,S,V,B).

Example 2.1.3

Consider the problem of finding u(x) such that

u' (x) f(x) , x €I = (0,1)
(2.1.6)

u(0) 0
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Let A= {0 = Xg < Xy <toe< X = 1} , where xj = j/n , be a uniform mesh
1 dset I, = (x, ,,x.) , h, = x, - x, =1/n, and h =1 .
on and s j ( j-1 xj) 3 i j-1 /n
Then let
lo
H=8 = {u:u€HYD , u©) = 0} ,
S = Sn = {s(x) : s 1is continuous on I , s 1s linear in each I, ,
s(0) =0 .}

For the test spaces we will consider two choices:

a) V= V1 = V1 0= {fv(x) : v(x) is continuous on I

>

?

v is linear on each Ij , v(l1) =0} .

b) V= V2 = V2,n {v(x) : v(x) 1is constant on each Ij} .

In both cases we consider the bilinear form

B(u,v) = f u'v dx .
I
It is easy to see that B(u,v) is regular on S x V in both cases.

If f € LZ(I)' then the solution u of (2.1.6) belongsto H and for

any v €V ,
B(u,v) = f fv dx .
I

It often occurs that the approximate solution produced by a simple
variational method M1 is judged to be insufficiently accurate and then
another method M2 is chosen which will give better accuracv. If necessary,
a third method M3 is chosen, and so forth. Although only finitely many
computations can be performed in practice, if a procedure is given for
determining the new simple method from the previous ones, one is

lead to an infinite sequence or familyv of simple variaticnal

methods, chosen to produce an approximate solution with acceptable accuracy




BE - RN

by considering sufficiently many of the simple methods in the family. The
methods Mn are often chosen so as to share the same bilinear form B .
We thus suppose we are given a pair of vector spaces H and UV , a
bilinear form B on H x V , and consider a family F of pairs (S,V) of
subspaces S C H and V ¢V so that dim S= dim V< « and B is
regular on S x V . The family of simple methods M(S,v) = (H,S,V,B) for

(S,V) € F will be denoted by M = (H,V,F,B) and will be called a

variational method. A simple method M € (H,V FT,B) is completely

characterized by the pair (S,V) € F .

In connection with such families of simple methods it is useful to speak
of error (absolute and relative) convergence, and other asymptotic concepts,
because the final aim is to obtain an M-approximate solution which approx-
imates the exact solution sufficiently well. Suppose X ™ H 1is a Banach
space with norm I-IX; we define the absolute error in the approximate solution
to be |u—u(S,V)|X . Let a be a function associating to every pair (S,V) € F

a real positive number a(s,v); a(s,v) will be called the discretization

parameter associated with the pair (S,V) . We say u(S,V) converges to

u in X as a(S,V) - 0 , written

1im u(S,V) = u ,
a(s,v)-0

if for each ¢ there is a 6 = 0 such that

[u(s ,v)—u|X <

for any (5,v) € F satisfying a(S,V) < & . We will often now consider H

to be equipped with the norm I- The family (H,X,V,F,B) together

X
with the discretization parameter a will be called a directed variational

method. For such directed variational metheds we will use the notation

[P I G 1
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M= (H,X,V,F,B,a) . The use of M for both the family of simple methods
! and the directed method will not cause confusion.
When implementing a variation method we select a sequence (Sn’vn) € F,
defining the simple methods Mn = M(Sn,Vn) , and compute the Mn—approximate
solutions u = u(Sn,Vn) with increasing n until an acceptable result

has been attained. The process of gselecting (S Vn+l) from (Si’vi) .

n+l’

i=1,...,n, and possibly from u(sn’vn) and other available information

will be called an extension procedure. The sequence {Mn} will be called

a computational variational method. Usually our acceptance criterion will

be quantified in terms of a norm, as described above.

Let us return now to our examples. We will elaborate in the examples

introduced earlier.

Example 2.1.1%

Let F be the family of pairs (S,V) , where S =V 1is the space of trigno-
metric polynomials of arbitrary degree n. Further we select V =H = (LZ(I))Z.
By this selection we have characterized a variational method M = (H,V,F,B) .

Choosing X = LZ(I) s |+l =

'IL

and a(S,V) = %-,where n 1is the
2

degree of the polynomials in S (dim S = 4n+2), we define the directed

variational method M = (H,X,V,F,B,q)

Selecting (Sn,Vn) €F, s =V being the space of trigonometric pelynomial
of degree n , the extension procedure consists of increasing the polynomial degree
by one. The sequence of simple methods {Mn], Mn = (H’Sn’vn’B)’ is a
computational variational method. A different extension procedure and computa-
tional method will be achieved if, for example, the degree of the polynomials
is increased in different way, say by 2.

Example 2.1.2%

Quite analogously as in the first example we select for F the family

of pairs (Sn’vn) . Sn = Vn being the space of the algebraic polyunomials of

PSP S
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degree n with zero values at x =0 , x = 1 . 1In the case a) we choose V = ﬁl
X = Hl and in the case b) U = H2 , X = LZ(I) . We further choose a(Sn,Vn) = %
where n -1 = dim Sn . The extension procedure would censist now in some speci

manner of increasing the degree of the polynomials. The notions of a variational
directed variational, and computational variational method are now obvious.

Example 2.1.3%

In the case a) we obviously select for V the space of all
continuous, piecewis~ linear functions subordinate to any uniform
mesh which vanish at 1 . In the case b) we let V be the space
of all piecewise constant functions subordinate to any uniform mesh. Ve choose
the discretization parameter a(S,V) =h = %- and in both casaes we
consider X = Hl . Note that in examples 2.1.1% and 2.1.2* we have s c§ s
V ¢ V whenever a(s,v) = a(g,ﬁ) but that this is not the case in Example

2.1.3%,

In Example 2.1.3, instead of X = H1 we could select X

i
o
N

=

etc. We could also choose H = Hk n %F‘ , k=2 | instead of H

2.2. Approximability and Optimality

Consider a simple variational method M = (H,S,V,B)€M , where M= (i ,X,V,F,B,qa
is a directed variational method. The purpose of a variational method is to
obtain an M-approximate solution u(M) such that the error (say relative is

smaller than a given tolerance <t . This means that we wish to select M so that

(2.2.1) lu(m) - ulx = Tlulx

where u is the exact solution of our problem. Thus for a given problem

the fun amental goal is as follows: given X and 1 , we wish to choose
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M= (H,5,V,B) € M so that (2.2.1) is satisifed in the most effective way.
The word "effective" must of course be understood in a manner appropriate
to the particular situation.

To achieve (2.2.1) it is certainly necessary that

inf Iu—slx

(2.2.2) Z(u,8,X) =58 <.,

Jul,

The quantity 2Z(u,S5,X) measures the relative error in the best possible

approximation of u by elements of S with respect to the chosen norm

X’ i.e., it measures the approximability of u by S with respect to

X and is called the approximability constant of S5 on u with respect to X or,

more briefly, the approximability constant.

That the trial functions are able to approximate the solution well,
i.e., that Z(u,S,X) is small, does not alone insure that the M-approximate
solution u(M) 1is close to the exact solution u . We therefore introduce
the ratio of the relative error in u(M) to thé relative error in the best

approximation. For any u € H , with ]u!x > 0 define C(u,M,X) = 1 by

lu(M) - ul
(2.2.3) _ X

July

= C(u,M,X) Z(u,S,X) .

If Z(u,S,X) =0 we set C(u,M,X) =1 . The quantity C(u,M,X) measures the

optimality of the approximate solution chosen by M and is called the optimality

constant of M on u with respect to X or, more briefly, the optimality

constant. When C(u,M,X) is near 1 the approximate soluton u(M) 1is nearly

as good as the best possible approximation using the trial space S . We
emphasize that while 2(u,S$,X) 1is independent of the form B and the test

space V , the optimality constant C(u,M,X) depends on S§,V,B,X, and u .
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The acceptance criterion (2.2.1) is thus simply that the product of
n C(u,M,X) and Z(u,S,X) does not exceed T .
;ﬁ; Although the exact solution u is unknown in any practical problem,

we often know some properties of u , namely that it belongs to H or to

H , where H is a subset of H . We define the approximability constant

of the space S on H with respect to X as the number

Z(H,S,X) = sup Z(u,S$,X)
u€H

and the optimality constant of M on H with respect to X as

C(H,M,X) = sup C(u,M,X)
u€H

We extend the notion of optimality constant to the directed variational

method M =(H,X,V,F,B,a) by defining

C(H,M,X) = sup C(H,M,X)
MEM

= sup C (H,M(S,V),X) .
(S,V)€F

The directed variational method M 1is calleu juasi-optimal on H with

respect to X if C(H,M,X) 1is finite.

The set H < H can be arbitrary. E.g. in the Example 2.1.2(2.1.2*)

o]
in case a) we have chosen H = H but we could select for example

H = Hk n f{] , k1 . We also can select

H = {ue}{z(l)ﬂﬁ] :u''(x) > alul , on (w,n) , where lw—nl = a,)} , a

H

,a, » 0

1’72

etc. Note that Z and C are homogeneous with respect to u i.c. Z{cu,8.X)

= 2(u,5,X) and C(cu,MX) = C(u,M X) and s0 we can restrict our interest
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only to functions u lying on the unit sphere.
The main use of the optimality constant C(u,M,X) and C(H,M,X) is
to provide an estimate for the absolute error |u—u(M)|x in terms of the

error of best apprcximation  inf Iu—slX . From (2.2.3) we have
s€S

| u~u (M) 'x < ¢(u,M,X)Z(u,S,X) |u|X

C(u,M,X) inf Iu-slx
s€S

which holds for any u € H . For any u € H we have

lu—u(M)Ix < C(H,M,X) inf lu-slx .
s€S

As we have seen above, the effectiveness of a simple variational method
is influenced by two factors: approximability, which depends on the selec-
tion of the trial space S , and optimality, which depends on the selection of
S,V,and B, Give X , we thus want to choose M so that C(u,M,X) and
Z(u,S,X) are as small as possible. Let us now turn to a more detailed dis-
cussion of C(u,M,X) . As indicated above we want C(u,M,X) to be not
much large than 1. Now, it is known that C(u,M,X) can depend strongly
on u (this will be illustrated later by examples). 1In order to make
precise and quantify this notion we say that the solution u is K-perfect

or K-perfect with respect to the method M if C(u,M,X) <= K. We will say

u 1is perfect if it is K-perfect with a small K otherwise we will call it

imperfect. A computational variational method {M;} will be said to be {Kj}—

perfect if C(u,Mi,X) < Ki . In practice we would usually want {Ki} to be

bounded by a fairly small number or to be increasing only

slowly. We note that even 1if C(u,Mi,X) + o U(Mi) may still converge

At nintinteaditsituitistdesinintu
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to u, for this particular u, since the product C(u,Mi,X)Z(u,Si,X)
may still approach zero.
Since the method M is defined for all u € H |, for a given K it is

natural to attempt to characterize the set H of all u € H for which

!
~

C(u,M,X) =
i.e., to : haracterize the largest set H satisfying
C(H,M,X) = K .

Usually it is not easy to describe the set in such a way that one could
in practice decide whether the exact solution belongs to it, except when
H=H=X. |

The observations that C(u,M,X) may depend strongly on u is very
important. 1t is common practice to attempt to draw conclusions about the
performance of a method M from experimental computations. These conciusions
could be misleading since the computations may have been made for a solution
u which is K-perfect with a small K , and for which Z(u,S,X) is small.
These conclusions could then be false when some other solutions are
considered.

This situation is related to the notion of robustness. A simple method
M or a directed method M 1is said to be robust if it performs well in
relatively general circumstances. 1t may be that a less robust method
performs better in certain situations. There are, in fact, methods which
perform well in certain situat ions but which fail to converge in others;
this is the extreme in nonrobustness. The importance of robustness has
to be seen in connection with the obse-vations that computational cost is

becoming a smaller and smaller part of the total cost of engineering analysis.,

P L UL WS W S P § = A . .y s
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In summary, as much as possible we would like to have a directed method
M which is quasi-optimal on H = H (usually H = X) with the conétant
C(H,M,X) not too large.

Next we make some simple observations conngcting approximability,
optimality, and convergence, and rate of concergence of a directed varia-

tional method. A directed variational method is called convergent on H if

(2.2.4) lim |u-u(s,V)|X =0
a(s,v)-0 :
for all u € H. If r is a function defined on F satisfying

lim r(X,V) = 0 , then the method is convergent with rate r on H if
a(s,v)~0

‘u—u(S,V)IX
(2.2.5) sup sup ————————— < @
u€i (S,V)eF  r(s,V)

We can also define the rate of convergence of a computational

variational method {Mi} . {Mi} is said to convergevwith rate r if

[u-u(s,,v.) |
(2.2.6) sup sup D < ™
u€H 1 r(Si,Vi)

We note that if a directed variational method is quasi-optimal, then (2.2.4),

(2.2.5), or (2.2.6), respectively, holds if and only if

lim Z(u,S,X) = 0 ,
a(S, V)0

sup sup ?(u,S,X)hﬂK
u€H (S,V)eF r(s,V)

< o,

or

2(u,s;,%) July

SUp SUp ey T < T
i’

u€H i
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respectively, hold.
We now return to our examples.

Example 2.2.1.

We consider the problem introduced in Examples 2.1.1 and 2.1.1% with
the matrix A(x) chosen as
A-cos x sin x
A(x) =
-sin x A-cos x
with A real, A # #1,0. In the discussion of this problem it will be
convenient to use complex notation rather than vector nctation. Thus

regarding u and f as complex valued functions we can write

Au = f as

(2.2.7) -e¥u = £

where here we are using ¢omplex multiplication. For test and trial space

we now take
s ijx
§=8 =V=V ={v:vs= z c.etd* cj complex} .

The bilinear form will now be

B(u,v) = Jnu(X—eix)v dx .

-

It 1s easy to see that the bilinear form is regular on S x V under the
assumptions on A imposed above. We let H =V = L2(I) and X = L,(I),
where here L2(I) is the complex L2 space, i.e., the space of square

integrable complex valued functions with the norm
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2 2 " 2
luly = lul - J u “dx
X LZ(I) -

with |lu| being the absolute value of u .
R ijx ‘
If u(Sn,V“) =u = Z c.(n)e™d is the approximate solution,
j=n
then cj(n) are determined by

4T 1 ..
[ (\-e x)u e I ¥ax
(2.2.8)
+rv . 13
= J (r-e *yueI*ax , |j] =n .

’
=1

Writing the exact solution in the form

(2.2.9) u= Jc.etd¥
j=—a J
3
we get
(2.2.10) Iuli =2n ) |c,|2 .
j.-:_ao A

It is immedjate from (2.2.8) that the coefficients cj(n) must satisfy

)C—n(n) = 7\C—n T C%p-1

N:j(n) - cj_l(n) = N:j T oyl j=~-n+1,...,n .
Letting zj(n) = cj(n) - cj , these can be written

Xz_n = - C—n—l

X?J = Zj—l s j=-n+1,...,n
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1If X # 0, this system is uniquely solvable and we obtain

(2.2.11) z_ _,.==-x"J¢ j=0,1,...,2n .

-n-1"

It follows from (2.2.9) and (2.2.10) that

2 -
2,5 , %)% = 20( ] chlz)iulxz
j|>n
and from (2.2.9) - (2.2.11) that
2n
) 2.-2 -2 . . 2, 2
l“‘“nlx = leqoq ™ am jZo MR RS0y
~4n-2
_ 2.-2. 1\ 2, 2
= Je_, {1 %an ——Ii;:f—-+ Z(u,$ X" ]y
and therefore that
| 1232 1-\"4n—2
) € _n-1 L2
(2.2.12) C'(u,M ,X) =1+ -
n 2
Yool
Ij'>n J

We will now analyze separately the cases |\| > land |A| <1 .

a) First we assume ]XI > 1 . Then from (2.2.12) we see that

1 1/2
C(U,Mn,X) =K = <1 + '—2——>
A-1

for all u ¢ Lz(i) and for all n, and thus
C(H,M,X) =K .

The method is therefore quasi-optimal on H with respect to X and all

solutions are perfect.
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b) Now assume |\| < 1 . Then we see that

-4n-2
-2

CZ(H,Mn,X) -1 272 1A

1-2

and the optimality constant deterjorates very quietly with n and we have
CHMX) =+ = .,
Let now Hi c H,£=1,2, be defined by

2 2 2
1 {u € L2(1)1|C_n_1| >a . chl for all n}, O<a< 1,
[5]>n

j= o}
[}

and

2o
[

= {u € L2(I):c_k_1 =0, k=>0}

where Cj are coefficients of the exact solution in (2.2.9). Then
obviously

-2n-1
C(u,M(Sn,Vn),X) > A a

for all u ¢ Hl and we see that all solutions belonging to H1 are very

imperfect for large n . On the other hand it is easy to check that all

solutions in H2 are perfect and M 1is quasi-optimal on H2 (C(HZ’M’X) =1).

Assume now that the extension procedure is such that only (SZk’VZk)’ k =1

are used. .[t
= € H = 8 = }

then the method is once more quasi-optimal on H3 . (If another extension
procedure would be used then these solutions could be very imperfect.)

Consider now the subset of H4 of ”1 defined by

PRI SR S N P PP P
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HA = {u € H k> 2 .

2 —- »
p ot anfle P < ) s a < =)

Then for u € H4 we have

lulf 20u,5,,0% = 2n| )2y e P o [y 20D 2
2 |3 |>n

and so
—2n—2lxl(n+l)K

” |Xl(n+1)(—2+K)

Ju-u_|y = Clull A  Clu

Hence we see that the method converges for u € H4 » since «k > 2, inspite

of the fact that the solution is very imperfect. (Nevertheless we can
expect computational difficulties caused by round off errors.) Using the

discretization parameter a(Sn,Vn) = n_l we see that we have, in the above

(n+1) (-24¢)

mentioned case, the rate of convergence r = [Xf (i.e., exponentional

A ~ MRS
; )

rate of convergence) which of course is lower that the error achievable
by Sn and characterized by Z(u,Sn,X)

c) Let us now consider the trial space Sn as before but change Vn

to On defined by

!
; | _—
4 vV = Vn ={v : v = Z c.e ¢ complex} .
{ j=-n+1 J
Now the cj(n) are determined by (2.2.8) with j = -n+l,...,n+l . Repeating

L now the analysis we easily see that for |\| < 1 , the method is quasi-
optimal on L2(I) but it faces the difficulties for IX] > 1 which are
analogous to those faced in the case ]X[ < 1 when (Sn’vn) was used.

' Let us now summarize some main points we have seen in this example.

1) If we select Sn'vn for the test and trial space, then in the case

IA] > 1 all solutions u € L,(T) are perfect and the method is

4 : o
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quasi-optimal. 1In the case |A| < 1 there are solutions which are very
imperfect but there exists a large class of solutions which are
perfect.

2) Although a solution can be very imperfect, the method still can
converge.

3) The optimality constant C(u,Mn,X) could deteriorate exponentially
with n and numerical experiments will most likely indicate this very
quickly, because it is unlikely that only perfect solutions will be used
in the experiments.

4) Changing the test spdce from Vn to Gn significantly changed the
performance of the method. The case |\| > 1 has a symmetric "major"
part while the case IN] <1 has a nonsymmetric "main" part. If the
symmetric part is the '"major" one,then usually (as in this case) it
is desirable to select the same trial and test spaces, while if
the nonsymmetric part in the main one (|\| < 1), then different trial
and test space are usually recommended.

Example 2.2.2 Consider the problem and the method introduced in

Example 2.1.2 and 2.1.2%,
a) Consider first the choice H=H, = H , ¥ =X =H

For any u € Hl we easily see that the equations defining u, = U(Mn) , namely,

- r
B(un,v) B(u,v) , for v € \n .

are equivalent to
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ie., . . is the orthogonal projection of u into Sn with respect to

1
the inne~ :© Product (u,v) = f u'v'dx on Hy . It is immediate from
-1

this that -
C(Hl,sn,xl) =V2 .

Thus all u € Hl are K-perfect with K = V2

b) Now we turn to the second choice of space considered in Example 2.1.2

and_2.1.;5*, and namely H = H2 = L2(1)

For any u € Xé, we can write

d = =
an X X2 LZ(I) .

(2.2.13) u= ) b.p,

where the 0, are the Legendre polynomials and

1
_2i41
(2.2-14) bi - 2 f Upidx .

We note tmat

2 = s

ully =

X, jo0 21#1

u can al«4o be formally written as

(2.2.15) u = ,Z die;
i=1

wvhere wi = P1+1 - p and

i-1

- S kA aa el a s Sa A S M A
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(2.2.16) < d,= b

L d b

41944 = By e 1=2,3,...

We will derive the formula for Cz(u,S“,Xz) in the spécial case when
u(x) 1is even with respect to 0 . 1In this case bi =0 for i odd
and di =0 for i even. At first we assume u 1is a polynomial which
satisfies the boundary conditions u(+1l) = 0 . Then both series expansions
(2.2.13) and (2.2.15) terminate after a finite number of terms.

Clearly

IU";:IXZ
z(u,S ,X,)) =—

L
2

~

where s 1is the projection of u into S in the space X, , i.e., where
n 2

-

s is characterized by

1 1
J Sv dx = f uv dx , for v €S
-1 n

From the basic properties of Legendre polynomials we see that degree of

¢; 1is 1 + 1 and mi(t}) = 0 . Thus Pyseeea®p g € Sn and moreover it
is easy to see that S EEEEEL ] form a basis for Sq . We write s in
the form
nil
g = (d.+z )y
=1 i 7177
and attempt to find the zy - Since u is even we have di =z, = 0
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for i even. For n = 2k even, 21129500052 are easily seen to satisfy

n-1

the equations

2 2
(2 +5)e - 5%, =0
2 (2.2 2 _
(2.2.17) J - —5'21 + <S + 9)23 - 625 =0
2 2 2 2
R (4k—3 + 4k+1)22k—1 =~ it Yot

which can be explicitly solved to obtain

(2.2.18) 2y = CQRIFD L 5= L2, 0k,
where
d
(2.2.19) C = - 22“3—1— :
2k +3k+1

Now we write

n-1 by
”"S=',Z 2Py ) L dileige, )
i=1 1=n
=p+o.

With this notation we have

2
(2.2.20) |u-s|X = |p+0|x = |p|X X

. 1
2 2 + Iol2 + 2 J po dx .
2 2 2 2 -1

Now
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Using the defining equatiors for Z)5 ""22k 1 ve thus have
2 k(2k-1)
(2.2.21) 'pl; T T Zﬁ%I dokt1%2k-1 ~ ) .
2 (4k+1)(2k +3k+1)
Writing o in the form
o= ) d(p,,.-p, ) =-d, o+ ) b P
j=2k j i+l Ti-1 2k+172k j=1 2k+2372k+27
we see that
2
2 _ 2 2 2k +2j
(2.2.22) l°|x2 = Wt Y2k t Z FHh 3+

Finally we see that

2
(2.2.23) loly
2

1
2 -
J_l Po dx = 3T Fok-1%2kt1 T T

Thus, combining (2.2.20), (2.2.21), (2.2.22), arnd (2.2.23) we get
(2.2.4)
2 2 2 2 2
YA (u,Sn,XZ)IulX = Iu—slx = lplx + |0|X2
2 2
2 d k(2k-1)
= - At 2 + &:il d;k+1 +2 Z ak+4 +1
(4k+1) (2k“+3k+1) 3
2 2
2 d° b .
=3 A 42 Akizfil
2k “+3k+1 j=1 J
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;:._. Next we calculate |u-unlx . In terms of the di and ¢, we

can ;ive a simple formula for uo s namely

n}-:l
(2.2..25) u = d, ¢, .
n i=1 i1
To sex= this observe that
!‘._
-- ul = z d (D'
i‘ i=1 ot
P o«
= ] d,(2+1)p,
i=1 1 1
nil
u' = d.(2i+1)p,
n 4=1 1 i

and hence
1

[ 1
.’—1 (aimupdogdx = - .[_1

From (2.2.15), (2.2.22), and (2.2.25) we get

2 - 2 2
oy lx = 1T a5l = loly
2 i=n Z 2
o b2

K+ “2k+1 58y GeHeg L

Finally combining (2.2.24) and (2.2.26) we have
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2 [u~-u |2
- 2 n¥
. (2.2.27) C (u,8 ,X)) = 7
= n’ 2 |u-8
ﬁi X
2 d2 + 2 2k+24
i 4k+1 “2x+l iL1 4k+43+1
2 2
2d © b
22k+l + 2 4ki§ffl
2k 43kl §=1 J
2
k1 .
4k+1 2K+1
2
k41 .
a3k 2k
where
o b2
A - z 2k4+2 j
2kH T L) Ak

and n = 2k . We have established (2.2.27) for any even polynomial satisfying

the boundary conditions. A simple limiting argument establishes it for any

even u € LZ(I)

It is immediate from (2.2.27) that

(2.2.28) C,Vn < C(X,,M ,X)) < C

1 /n

2\
and so

C(XZ,M,X ) =+ =,

L e . o P P - |
. LR P b . re -
o
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From (2.2.27) we also see that if u 1is such that

. | P
N : 2k+1
Akl < KA2k+1 , for all k ,

%
e

then u is VK+l - perfect. For the particular choice u = ;'= 1, we get

bj =0, j=1 and we see that

W
'
.
a
b

2

1/2
— 2k " 4+3k+1
(2.2,29) C(U,Mn,X ) —(_W> ~cvn .

By compairing (2.2.28) and (2.2.29) we see that u belongs to the set of

most imperfect solutions. It is easy to see that

— — C
Z(u,S_,X,) |u|X2 ==

and hence

- = < -1/2
”u—UnHX2 =Cn )

Thus the method converges for u although C(E,Sn,xz) 4 o,

d?

1f we define u by u = bipi where bi =i , with O0< eg< 1/2 ,

i

Il t~18

then we see that

2
TS

X, ~ " 2n+l

v

!“-“n‘

2
)

2+l

200

-£,.2

(142 75 T

2n+l

- 2

7 (D-n 5)-
2

S Py

giiii_, 7ﬂ w
2(2n+1) :

=2
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This illustrates the fact that the method could diverge even though

]s Z(u,Sn,X) =+ 0 . Although the method is not robust, we see that the optimality

o constant grows relatively slowly with n (C ~ Vh)

Let us now summarize some main points we have seen on this example.

i. 1) The method M1 = (ﬁl,Hl,F,B,a) is quasi-optimal but the method

M2 = (ﬁl,Lz,F,B,a) is not quasi-optimal, although computationally the methods

are identical.

2) The set of perfect solutions for the method M2 is relatively
large and very likely the method would work well. The performance, in fact, wou
be good unless the solution under consideration were one of the relatively
rare imperfect solutions. The performance can be good also if the solution
is imperfect since for reasonably smooth solutions u satisfying the boundary
conditions, Z(u,Sn,Lz) -+ 0 more rapidly than (VG) -+ «® ., (Recall that

Vn gives the growth of the optimality constant.)

2.3. Stability and the Stability Condition

We have seen that the optimality constants C(u,M,X), C(H,M,X), and C(H,M,X)
play essential roles in understanding variational methods. The notion

of K-perfect solutions is, in fact, defined in terms of C(u,M,X) . We have

also seen in Examples 2.2.1 and 2.2.2 that the calculation or
estimation of optimality constants can be rather subtle. It is important
to be able to estimate these constants for wide classes of problems. Toward
this end we iutroduce the notion of the stability constant which is often
easier to estimate and in terms of which we can estimate the optimality
constants.

Let M = (H,S,V,B) be a simple variational method and let H ¢ X and
Hc H . For u€H define

_IAP (Au+s) l X

(2.3.1) D(u,M,X) = sup ———=
s€S lu+slx
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(2.3.2) D(H,M,X) i:g (u,M,X)

D(u,M,X) is called the stability constant of M on u with respect to

X and D(H,M,X) 1is called the stability constant of M on H with

respect to X . For a directed variational method M we define

D(H,M,X) = sup D(H,M,X) . D(H,M,X) is called the stability constant of M on
MEM
H with respect to X . We say M 1is stable on H with respect to X if

D(H,M,X) is finite. We now show the relation between the stability and optimalit

constants.

Theorem 2.1 The stability and optimality constant satisfy

(2.3.3) D(u,M,X)-1 < C(u,MX) = D(u,M,X)+1 ,
and
(2.3.4) D(H,M,X)-1 = C(H,M,X) = D(H,M,X)+1

Proof. We easily see that

]u—Pu|X = | (u-s) - P(u—s)lX
= Iu—slx + jP(u—s)IX
< [l+D(u,M,X)]Iu—S|X

for any s € S , which proves the second inequalityv in (2.3.3). For any

s € S we have
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IP(u+s)lx | (uts) - P(u+s)|x + lu+s'x

1A

|u+s|x |u+s|x

|u—Pu|
<1+ —%
|u+s|X

]u—PulX

IA

1+

inf,u—s,
s€S

1+ C(e,M,X) ,

which proves the first inequélity in (2.3.3). (2.3.4) follows immediately
from (2.3.3).

We see that a directed variational method is quasi-optimal if and
only if it is stable.

Let us now turn to a further discussion of stability. Suppose H is
closed in X . We easily see that D(H,M,X) = ||[P|| , the operator norm of
P . In Section 2.1 we introduced the idea of a computational
variational method as a sequence of simple variational ﬁethods_ Mn =
(H,Sn,Vn,B) selected from a directed variational method M = (H,X,V,F,B,a) .

Assume we are given such a sequence and suppose

(2.3.5) D(H,Mn,X) = HP(Mn)H + ® g5 pn >,

We will now show that this implies that there is a z € H such that the
method does not converge to z .

Theorem 2.2  Suppose (2.3.5) holds and suppose H is closed in X .
Then there is a z € H such that P(Mn)z -+ z

Proof. Suppose the method converges for all u € H | i.e.,
lP(Mn)u -+ ulx +~0 as n >« for all u € H . This implies PMu is

bounded for each u . The uniform boundedness principle [6, p. 190] then
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implies that HP(Mn)“ is bounded in n . This would contradict the
hypothesis (2.3.5).
Theorems 2.1 and 2.2 show that methods which are not quasi-optimal are not
robust in the sense that there exists solutions for which the methods do
not converge. It should be noted, however, that the solution 2z in
Theorem 2.2 could be very "wild" or "irregular'" and the computational

variational method might still converge for a large class of u

in H .
Let us note a further significance of D . Suppose u € H and s € §
satisfies Z(u,$,X) = Iu—slX . Set E = Pu-s . We easily see that
z = -
£l = [pu-s],
= |1>(u—s)|X

A

D(u,M,X)fu—st .

Thus D is a magnification factor relating 'E‘X and iu—slx . Usually
we replace D(u,M,X) by D(H,M,X). It should be noted that this replace-
ment could lead to a rather pessimistic estimate.

We noted earlier that the stability constants are often easier to
estimate than the optimality constants. We will now show how the stability
constantscan be estimated in terms of the bilinear form B.

Theorem 2.3. Suppose the space V 1is furnished with a norm ,VIV

Assume

1) for any u € H there is a constant C(u) such that

(2.3.6) [B(u+s,v)| = C(u)[u+slxlv| for all s €S and Vv €V

v b

and
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(2.3.7) 2) inf sup |B(s,v)| =vy(s,v) >0 .
s€S vEv
|s|x=1 |v|v=1

Then
< lc(u) |
(2.3.8) D(u,M,X) _m,—v-)—

for all u € H .
Proof. From (2.3.6) and (2.3.7) we have

A

sup |B(P(u+s),v)]|
vev
Ivlv=l

Y(S,V) |P(uts) |X

sup |B(u+s,v)|
vEV
o, =1

=< C(u)|u+slX

for all s € S, from which (2.3.8) follows.
Remark: If (2.3.6) holds for all u € H with C(u) replaced by C(H) ,
then (2.3.8) holds for all u € H with C(u) replaced by

C(H)Y , i.e.,

C(H)

D(H,M,X) < TGV

We can also estimate D(H,M,X) below by 1/y(S,v) provided certain

additional assumptions are made. Suppose H and V , furnished with the

and "IV , respectively, are a pair of Hilbert spaces or

norms . l X

reflexive Banach spaces, B 1is a bilinear formon H x V |, and S c H ,
V ¢ V are a pair of finite dimensional subspaces. For v € V we set

}VIV = Ivlv . Now assume

e . e La o
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(2.3.9) |B(u,v)| = C|u|x|v|V s, for u€H 6 vev,
(2.3.10) inf sup |B(u,v)| = w >0,
u€H vEey

luly=1 [v]y=1

and

(2.3.11) sup IB(u,v)] >0
u€H

, for 0 # v eV,

We note that in the presence of (2.3.9), (2.3.10) and (2.3.11) are necessary

and sufficient for the variational problem

u € H
B(u,v) = F(v) , for v €V

to be uniquely solvable for each bounded linear functional F on

In this situation we also have

-1 F -1
|u|x < w " sup lTé%ll =w ~ ||F|
vey

v

This result is proved in [1, p.112

Theorem 2.4 Suppose (2.3.9)-(2.3.11) hold. Let u € S

and set
(2.3.12) ~—_1—— sup IB(H,V)' = Q(u)
5l ve
’ IV|V=1

Then there exists a u € H such that P(M)u = u and

@0

QCu) °

(2.3.13) D(u,M,X) =




Proof. Obviously F(v) = B(u,v), v € V , defines a bounded linear functiona

V . 1t is possible to show F(v) can be extended to a bounded linear

functional on V with

sup  |F(v)| = sup |F(v)| = Q(G)|E|x .
vey vel
Iv]y=1 lvly=1

This is the content of the Hahn-Banach Theorem [6, p. 134].

As noted above, from (2.3.9)-(2.3.11) it follows there is a u € H

satisfying
B(u,v) = F(v) , for all v €yp , L
and
Q(w) [u]
(2.3.14) lul, s ——% .

It follows immediately from the definition of F that P(M)u = u .

Using (2.3.14) and the definition of D(u,M,X) we thus have

IPMX=IU& S @
luly I“lx - Q@

D(u,M,X) =

This completes the proof.

Theorem 2.5.  Suppose (2.3.7), (2.3.9) (2.3.11) hold. Then

w
(2.3.15) D(H,M,X) = Y—(S:VT
Proof. This result follows immediately from Theorem 2.4 and the

definitions of D(H,M,X) and v(S,V)

P P W . . - P A G W G ot
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lLet us now elaborate on Theorem 2.4. It shows that functions u

with D(u,M,X) large should be sought among functions whose projection

u = P(M)u have small Q(;) . Of course not every u € H satisfying

P(M)u = u leads to large D(u,M,X) , as shown by the fact that for u € S

Pu=u and D(u,M,X) =1 . If we define
(2.3.16) R(u) = {w€H:P(M)w=u}

then for u € R(u) , D(u,M,X) 11 be largest for that u with smallest

Iulx . Thus if we define

W(u) = inf |w|X
wéR(Q)

we see immediately that there is a w € H such that

D( M.X) > |_u!§
w’ bl ) - W(U)
Obviously every choice of u €S and u € R(u) leads to a lower bound
for D(H,M,V):
Iulx
D(H,M,V) ke -

& [ulx

-

3 This gives a practical tool for estimating D(H,M,X) from below.

;‘ Condition (2.3.7) is easily seen to imply the regularity of the
{ bilinear form B on § > V.

A directed variational method M = (H X,V F B, 1) is said to satisfy

éi the stability condition if

1

-

I

) (2.3.17) vy(S,V) "y =0

b

»-

(

1

s

Z
| e N S

’
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for all (S,V) € F . This condition is sometimes also called the inf-sup

condition, or the LBB or RB condition.1 Theorems 2.1 and 2.3 show that

when (2.3.17) holds, then D(H,M,X) 1is finite and the method is stable.
An especially important situation occurs when H =V , F is the

family of pairs (S,V) with S =V and

(2.3.18) B(u,u) > Y|u|i , v>0

for any u €S, (5,8) € F. Then +(S,S) =y . In this case we say that
the form is coercive.

Suppose M = M(Sn’vn)’(sn’vn) € F, is a computational variational
method for which Y(Sn,Vn) +0 as n += . In addition suppose Mn
satisfies the hypotheses of Theorem 2.4 for each n . Then Theorem 2.4 shows

that there is a sequence u € H such that

D(u ,M ,X) - = |,
n’ n

Theorem 2.4 does not show the existence of a u € H such that u(Mn) 4 u .
This, however, follows from Theorem 2.2.

Combining this observation with Theorem 2.3 we see that the stability
condition (2.3.17) is necessary and sufficient for quasi-optimality of the
directed variational method M = (H,X,V,F,B,a) . The condition is necessary
in the sense that if it fails then there will exist at least one u € H
for which the method fails. As we have noted above, however, the method

may still perform well for all solutions of major practical interest.

1This terminiology relates to [1],[5] where this condition was first introduced

in connection with the analysis of the finite elcment methods.
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Various statements in the literature that certain mixed methods work well
inspite of the faét that the LBB (BB) condition is violated have to be understood
in light of tﬁis observation.

Let us return now to the problems and methods introduced in our previous
examples and apply the results discussed in this section.

Example 2.3.1 (Cf. Examples 2.1.1, 2.1.1%, and 2.2.1).

Suppose A(x) 1in (2.1.3) is of the form

A(x) = A + B(x)

0

where AO is a constant invertible matrix satisfying
-1
Ay BGO =g <1

where |/+| denotes the matrix norm associated with the Euclidean vector
2
norm. Take X = H = (LZ(I))Z and let V = (LZ(I)) as before

It is immediate that

B(u,v) = Clglx ll,v , for u €H ,v eV

with C = 2 max Hai.(x)”
i,j
easily see that

Given u € H , let v = (A

L_(1) = L o U Ve

B(u,v)

1
J_” EAal(AO+B)E.dX

]

1
J u(1+A'1B)u dx
—n 0 -

* Julfa-o)

and
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ul

lvl, = Qluly

Hy o,

where Q = H(AB from which we obtain (2.3.10) with

w = laﬂ >0 .

Thus conditions (2.3.9) and (2.3.10) hold for this example. Condition
(2.3.11) is also easily seen to hold. (Note the assumption that A0 is
a constant matrix was not used.)

Our main goal is to show that (2.3.7) holds. 1In the previous paragraph

we have proved the infinite dimensional analogue. The proof of (2.3.7) is

similar but we use now the fact that A0 is constant matrix. For u €5

-1,T
let v = (Aol) u . Then y €V since Aj is a constant matrix. The

above estimate thus shows that

y(S,v) = léﬂ >0 .

Therefore we see that the assumptions in Theorem 2.3 are satisfied and,
moreover, the stability condition (2.3.17) is satisfied with +y(S,V) = 1-q/Q .
Although the quasi-optimality of the method under our assumptions could be
proven by the approach and in Section 2.2, obviously the approach used here
is much simpler and can be used in many situations.

Example 2.3.2 (Cf. Examples 2.1.2, 2.1.2%, and 2.2.2.)

Consider the problem introduced in Example 2.1.2. Let H = H1 = ﬁl s
X = Xl = Hl , and V = ﬁl with the Hl—norm as above in case a. We obviously
have
B(u,u) > 2—1/2|u|i . for u € H1 .

i.e., B 1is coercive, and we thus see that the assumptions of Thcorem 2.3
are satisfied and hence the quasi-optimality of this method has again been
established. As we have seen in Example 2.2.2 a similar analysis would fail

in case b).
i . P T - - B .- - J
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Example 2.3.3 (Cf. Examples 2.1.3 and 2.1.3%)
Let H = %1 , X = H1 , and V = L, .
a) First let us consider the space Sn and VZ’[1 introduced in
case b) in Example 2.1.3. Then (2.3.6) and (2.3.7) are satisfied and as
before we conclude that the method is quasi-optimal and stable,
b) Now consider the case of test spaces V introduced in case a).

1n

Our goal is to show that

(2.3.19) C.n =< D(H,Mn,x) = C,n

1 2

where C

€, > 0 and independent of n and with M = M(Sn,V ).

1’ 1,n
We will prove the left side of (2.3.19) by applying Theorem 2.4.

Toward this end we construct a particular u and estimate Q(G;) , as

defined in (2.3.12), from above. Let u € Sn be defined by

(2.3.200 W = (I 2,

3-1 < X< xj s 3 =1,2,...,n ;

the graph of u& is shown in Fig. 1.

Fig. 1 Graph of the function u .




Note that

- (2.3.21) lugly 2€>0.
-
Now let WO""’ n-1 € Vl,n denote the basis functions defined by
Wo(x) = l-nx , 0 < x < Xy
nx-i+l , Xi 1 <x <X

Wi(x)

nx+i+l , X, < x < x4 i=1,...,n-1.

Then we have

i-1 -2
T I Tt
(2.3.22) B(un,wi) =
1 -2
-Zn . i=0.
Any ¥ € V1 L can be written in the form
’
n-1
V=l ooyl

and we easily see that

1 {12 2 2 B 2 _irr2 2 .. .2

3n [T’Oﬂl+.”kn—l]_ iy =3 [2Co+‘“1+ +Cn-l] '
Therefore

lB(Gn,\y), = IZ (:iB(Gn,\lli)I

P RPNt canadh "




Thus

- -1
< <
Q(un) Zn <Cn .

(2.3.23)

Since (2.3.10) holds with m.=v;¥-, we see from Theorem 2.4 that
2
This proves the left side of (2.3.19).

Before turning to the proof of the right side we will construct a

particular w € R(G#) which will play the role of u in Theorem 2.4.

We begin by constructing go(x),...,g 1(x) so that
n-
Ei(x) =0 for Ix-xil > 1/n
[*i+1 (il
(2.3.24) J B¥y dx =" 0y 0 1320,
o 4 *4-1

*1
£ d_:_l_
oYo 4* = 7
\

where 6., 6 = . Specifically we choose

in Fig. 2.

Fig. 2. The graph of the function

£y -

-~ o O A S PP, > S e CHPIT SO S | e T r e

..,0=1 |, not both 0

Ei(—l)i_l as shown

D=2Cn .
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Then we define

1 n-~1
(2.3.25) p(x) = 35= ] E.(x)
i=0
and
b
(2.3.26) w(x) = J p(t)dt .
0
It is easy to see that
(2.3.27) jw lx = Ch .

From (2.3.22), (2.3.24) and the definition of w we have

1 1
B(u,,¥,;) = Jo ury; dx = [0 w'y, dx = B(w, ¥,) , 1i=0,...,0-1,

which shows that in = G; . Using (2.3.20) and (2.3.26) we thus have

A lulx _

Cn

wle  luly

which was our goal.

Let us remark that ;5 is not unique. It is essential, however, that

it is what we referred to earlier as a wild or irregular function. It is

also of interest to note that the function dn € S, defined by
1

ol () = (-7, xS xS
will not lead to the desired result since we could only prove

Q(Gn) > cvh .
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We will now prove the right side of (2.3.19) by applying Theorem 2.3.

lerz u €S and set

n
wy = u'(xi~l/2n) , 1=1,2,...,n .
Theen select v €V so that
1,n
V(xi) =V,
whezre
vy wi-!wi+1 ’ i=1,...,n-1
Vg S Wy s v, = 0.
We easily see that
2 1 wy
1 2 1 0
B(u,v) = ;L-(w e W ) RN . )
’ 2n 1’ ’"n N
0 1 2 1
1 1
[\ -

Consider the auxiliary (2n-1) x (2n-1) matrix

and the associated quadratic form
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(2.3.27)

......
----------

...................

and therefore from (2.3.26) we obtain

r

B(u,v) > C n—3(2w2+"'+2w2 +w2)
1 Il‘l n
n
‘ > Cn_3 5 w2
L i
i=1
= C n_z'uli .
"

.+»2n-1 |, and thus it is easily

- N 1
$(z) — (21,. "ZZn—l) A .
Zoan-1
The eigenfunctions are sin é%-k , k=1,,
seen that the least eigenvalue Xl(n) of A satisfies
A (n) >cn? .
Thus
2n-1
(2.3.26) #(z)>cn % ] 2 .
i=1
Setting
Y1
. wn-l
Z = W
n
wn-l
\ "1
we see that
B(u,v) = 1 @(;)
? 4n i

- A e .w .-
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We also see that

~

(2.3.28) <

Combining (2.3.27)

from which we get

Y(Sn’vl,n

Since

for

-

for u € H .

Next we show that, although D(H,Mn,X)

still works well for smooth solutions.

MFE

i

-1 2 2 2
Cn [w1+(w1+w2) +- +(wn_1+wn) ]

C B(u,v) .

and (2.3.28) we obtain

1Bl 500,02

vy
zC n—llulx
. -1
inf sup |B(u,v)| = Cn " .
u€S  vEev
n l,n

?
Iu]x=l |V|V=1

B, v = July VI,

u €H , v €V, thus from Theorem 2.3 we have

D(u,M ,X) < Cn
n

This proves the right side of (2.3.19).

is large, the method

Specifically we will prove that

PO T ST U WP S SRR T WOU Wy W SO S G S e P B e
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(2.3.29) Iu—unlx < C hju|

MO

35 - ) =
for u € C°(I) , where u = P(Sn,Vi’n)u and h=1/n . Let u

It is easy to see that the finite element equations reduce to

uy = 0
u, -u X
2.3.300 { 2= J beax
*0
u,, ,—-u, X
S J Hoey dax, i=1,...,0-1,
| 2 % i
i-1
where WO""’Wn-l are the basis functions for Vl,n

Since u € C3(f) , f € CZ(T) and we can write

X X
1 1 ~ 2
2 Ix £ ¥, dx - IX f dx = g) h
(2.3.31) < 0 0
X X,
2 J 41 ¢ ¥, dx - f Mlrax=q 0, i=1,
L Ti-l *i-1
where
(2.3.32) la. | = clf] , _
c (1)

Now, using (2.3.30),

[ugpmu(xg4, .
i-1 i-1

and so, setting gi = ui—u(xi) , (2.3.30) implies

introduced earlier.

X X
i+l i+l .
V] = luy jmu(xg g)] =2 ] f ¥, dx - fx fdx , i

=1 s.-.,n"l
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(2.3.33)

T Y T
RGN = SOREADASAAON M LAk
.

From (2.3.32) and (2.3.33) we obtain

2
lg.] = cle] , _h", j even
3 C2

(1)

and

el sclg| , _w+ lg ], 3 odd .
4 ¢ (D)

Using (2.3.30) and (2.3.31) again we have

*1 x 2
E, = ul—u(xl) =2 Jo £ g dx = J £ dx = agh
0
Thus
2 .
le.] =clg] , _n" , 3=01,...,n,
J c“ (@)

with C independent of . n .

Letting Inu denote the Sn—interpolant of u we have

|u—un|X = lu—Inulx + IInu—u“|X

(2.3.34) <
< Chlu] .+ [T u-u_], .
L C3(I) n n'X
we further see that
T w(x)-u (x) = |&,| < Ch2|u|
n i n 1 i Cj(f)

PR P I S PP S . . e —
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From this we get

2
Ilnu—u = Ch%|u 3 _

|
n'L, ¢’ (1)

and thus, using the fact that lslx = CnlsIL for s € Sn (the so-called

2
inverse assumptions for Sn)’ we have
(2.3.35) T u-u |, = chju|l , .
n n'X C3(I)
Combining (2.3.34) and (2.3.35) we have
Iu—unlx = Chlu] 3
Cc7 (1)

This is the desired result.

Define now

H={u: |u] , _ <o, u@) =0, u"(x)>aq ful 4 _
3@ @

or u"(x) = -q,]|u] 53— on (w,m) with

a
V3o

IMI = az}a alsaz > 0 .

Consider now the method using (Sn,V ) . Then we easily see that

1,n

(2.3.36) C(H,Mn,Hl) < ¥

where K depends on a a, but is dependent of n . In fact it is

1’

easy to see that for u € H ,

Chalazlul 3

Z(u,Sn,HI) > . m
Iul 1
H

T T e I AP I T Y




p—

and (2.3.36) is obtained by combining this estimate with (2.3.29).

Let us summarize some main points shown in case b).

. . L1

1) The method is not quasi~optimal on H = H ; nevertheless the
instability is not too strong. The analysis has been based on results
relating to Theorem 2.3.

2) The method is quasi-optimal on the set H , i.e., all functions
belonging to H are K-perfect. We note that H is not closed in ﬂl

3) The result that H is a set of perfect solutions cannot be

directly proven by Theorem 2.2-2.5. A special analysis is necessary.
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3. Further Examples of Finite Element Methods

3.1. Introduction

In this section we examine three different finite element methods
for the approximate solution of a simple model problem, namely that of a
longitudinally loaded bar on an elastic support. The classical displace-

ment formulation of this problem is

Lu = -(E(x)F(x)u’'(x))' + b(x)u(x) =p(x) , 0<x< 1
(3.1.1)

u(0) = u@) = 0 .

Here u(x) , 0 < x < 1 , denotes the longitudinal displacement and E(x)
denotes the modulus of elasticity, F(x) the crossectional area, b(x) the
spring constant of the elastic support, and p(x) the longitudinal load.

We will let a(x) = E(x)F(x) and assume

(3.1.2) 0<py =ax) =g, 0sbx sp,

but otherwise allow a and b to be rather general functions. They
could be, for example, constant functions (corresponding to a bar with
uniform crossection and elastic properties and a uniform elastic support)
or step functions with many steps (arising in the study of composite
materials, for example).

We now cast this probem in variational form. Let

1
(3.1.3) B{u,v) = j (au'v'+buv)dx .
0

Then we easily see that (3.1.1) can be formulated as

m

u € ﬁl {u : u € H] , u(0) = u(l) = 0}

(3.1.4) J] 1

B(u,v) pv dx . for all v € i

0
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B is defined in H x V , where H = VU = ﬁl .

To complete the specification of a directed variational method, in addition
to the bilinear form we must select family F of the trial and test spaces S

and V , the space X , and the discretization parameter a . We will present

three choices for S and V in the next two subsections.

3.2. The Standard Finite Element Method

Let A= {0-= Xg < Xy < cee< Xy = 1}, n(A) = 2, be an arbitrary
mesh on [0,1] and set I, = 1_(A) = (x, .,%.,) , h, = - v
j J( ) (XJ_l xJ) j hj(A) Xj xj—l .
and h = h(A) = max hj(A) . Then set
0<j=n(4)
(3.2.1) S = SA =V = VA = {s(x) : s(x) 1is continuous on [0,1]

s{x) 1is linear on each Ij .

and s(0) = s(1) = 0} .

-y =gt - 1
Let H=V=H , F = {(SA’VA) : A any mesh} , X = H , and a(SA’VA) = h(a) .

We can now discuss the directed variational method
1
M= (Hu ,V,F,B,a) .

The optimality of this method is given in the following

Theorem 3.1 The method M 1is quasi-optimal on fl with respect to Hl , i.e.

(3.2.2) c@l mh = ¢
with € depending only on Bl and 52 but independent of 4 . Thus

(3.2.3) ]u—P(sA,vA)ulH1 < ¢ inf Ju-v]|

lle‘; l ‘{

Proof. This standard result is proved by showing (2.3.18) and using

Theorems 2.3 and 2.1. In fact for all u ¢ ﬁ] we have
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1
B(u,u) = [ (au")? + bu?)dx
0

o
As stated in Theorem 3.1, the optimality constant C(H ,M,Hl) is
finite and is bounded uniformly with respect to the class of coefficients

a and b satisfying (3.1.2). Regarding approximality let us state the

( standard result for the elements under consideration:
:ﬁ (3.2.4) inf |u-s| 1= Ch|u| g
- s€S, H H

where C 1is independent of A . Thus for any u € ﬁl n H2 ’

- Chlul 2
. 1 H

= (3.2.5) Z(u,SA,H ) <
ul
H

If our solution u 1lies in Hz, then from (3.2.3) and (3.2.4) we have

- the error estimate

]u—P(SA,VA)uIHl ] Chlule .

We note that if a'(x) and b(x) are bounded, then we can prove that

lul , = ¢ |pl
H? L,

From this and (3.2.5) we obtain

\ (3.2.6) |u—P(SA,VA)u|H1 <C h|p|L

L)

<

C here depends on the maximum of a' and b . (3.2.6) is not, however,
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valid for problems with rough coefficients (coefficients which are step
functions, for example).

Next, let us consider the same family of simple methods but choose
X= L2 . We present a result showing the resulting method is not quasi-
optimal.

Theorem 3.2. Suppose a{x) =1 and b(x) = 0 . Then for any constant

C>0 and any A there is a u € ﬁl such that

(3.2.7) |u-P(S,,Vv,)|, > C inf |u-s|
4" 471, S€S L2
A
Thus
3 °1 et ow
5 (3.2.8) C(H ,M(S,,V,),L,) =+
-
pq for any A .
P

Proof. Suppose A = {0,1/2,1} and let u be as shown in Fig. 3.1

with u(1/2) =1 . It is easily shown that, since the

g
! t o

- / (P(SA ’VA )U
/ \
I / \

/ U, \\

d / \
[ b
O |/2 I

Fig. 3. The graph of function 3.

P(SA,VA)U is the SA- interpolant of u , as shown in Fig. 3 by the

dotted curve, Iu—P(SA,VA)ulL2 is nearly as large as IP(SA,VA)uIL2 = 1/V3
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and inf Iu—s|L , which is = Iu[L » is nearly as small ‘as zero. This
s€S) 2 2
completes the proof for this simple mesh. The proof for a general mesh

is similar.

It is internsting to compare Theorems 3.1 and 3.2 with Example 2.2.2.
In that example we treated the same boundary value problems but based our
approximation in polynomials instead of piecewise linear functions. 1In
Example 2.2.2. we obtained C(ﬁl,M(Sn,Vn),Lz) < ¢Vn 1in contrast to the
result C(ﬁl,M(SA,VA),L )= + = obtained above.

Theorem 3.3. Suppose a'(x) and b(x) are bounded. Then for any

u € H2 we have

L

2 2
(3.2.7) Iu-P(SA,VA)ulLZ < Ch |u|Hz < ch”|p| ,

where C 1is independent of u and A but depends on a and b . 1If
‘ 2 o] "
H={u:u € NH , u"(x) = al|u| or

H2

u(x) = - a1|u| 9 On (w,m) where {w—m| = az}
H

with a s ay > 0, then any u € H 1is K-perfect with K depending on

ai5ay,3, and b. Thus

C(H,M,LZ) <C.

Proof. The first part of the result is standard (see e.g.[ 2 ]) and

the second part follows from the fact that

- . : N : Y : P - G G PO s 4
- —
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We consider now one more choice for X , namely X = L Then

the following result is proved in-[3].
Theorem 3.4. Suppose that a,b are sufficiently smooth. Then there

is a constant C such that for any u € L_ ,

(3.2.9) lu—P(SA,VA)u|L = Cinf |u-s|

o s€SA o

with C independent of u and A but depending on Bl,Bz and the maxi-

mum of the first derivatives of a and b

Thus

(3.2.10) cal, ML) =c .

It is interesting to compare Theorems 3.1, 3.2, and 3.4. The computationally
identical method is quasi-optimal on ﬁl with respect to H1 and L_  but

is not with respect to L2

3.3. A Second Method for Solving (3.1.4)

In this subsection we suppose b(x) = 0 . Here we choose

A

V= OA = {s(x) : s 1is continuous on [0,1] ,

w»
]

(3.3.1) § =
s{(x) 1is a solution of (as')' = 0 on

each Ij , s(0) = s(1) = 0} .

il
<

[}
To

—

<

fl
™

1]

We again let H {(§A,§A) : A any mesh} ,

and a(SA’VA) = h(A) . We will discuss the directed variational method

1 °1 ¢

M = (ﬁl,H LJH ,F,B,a)

Exactly as in Theorem 3.1 we see that this method is quasi-optimal on H

with respect to Hl . The methods differ, however, in regard to the

P Y TP AP U S Sl GO~ SO - v A




L

D G A AU BEN SN S an cm on

g e o oo
aa . .

T

B s B

58

Approximation properties of the trial spaces employed. The
approximation properties of the trial space introduced in (3.3.1) is given
in the following theorem.
Theorem 3.5. There is a constant C depending only on Bl and
Bz such that

(3.3.2) inf fu-s| | = Ch|Lu], = Ch|p|L2
2

s
€SA H

Proof. See [4].

Combining this result with the above mentioned quasi-optimality we

obtain

(3.3.3) lu—P(sA,vA)ulHl < Chlple

This estimate should be compared with (3.2.6). They differ in that while
(3.3.3) holds for all a(x) and b(x) satisfying (3.1.2), (3.2.6) holds
only for smooth a and b . Thus we see that the method M considered

in this subsection 1is very accurate. Because of the unusual test and

trial space it is, however, not easily implemented. The method introduced
in Subsection 3.4 will be as accurate as the method discussed here while
being as easily implemented as the standard finite element method discussed

in subscction 3.2,

3.4. A Third Method for Solving (3.1.4)

As underlined in Section 2.2, the trial and test spaces play very
different roles. The trial :;uce is chosen for its approximation properties
and the test space is chosen so that the method is optimal or nearly optimal so
so that the method is easily implemented. The standard method, which

uses piecewise linear functions for both trial and test spaces is optimal

PR ARy AP Wy W VT TPU WA
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and 1s easily implemented. The trial space has poor approximation properties
for problems with rough coefficients, however. The method discussed in
Subsection 3.3 is optimal and has good approximation properties while not
being easily implemented because of the way the load enters in the computation.
The method discussed in this subsection will use the trial space §A used
in the sebond method and use the test space VA used in the standard
method. This choice will simplify the implementation, making it
virtually of the same complexity as standard method, while preserving
the advantages of the second method.

Suppose as above that b(x) =0 . Let S, be as defined in (3.3.1)

A

and let V, be as defined in (3.2.1). We let H - B, x=8wt,v=-n
? = {(§A’VA)} , and a(§A,VA) = h(d), and consider the directed variational
method

M= (Hu',V,F,B,a)

Theorem 3.6. There is a positive constant vy depending only on Bl

and BZ such that

(3.4.1) inf sup |B(S,V)| = v(s,,V,) = v
2 A’ A
sESA VEVA

Is| ;=1 |v] ,=1
H! ut

for all A .

Proof. For s €5, let s €V, be defined by

Set

(3.4.2) a = (J atax) " th.
L j




Then we easily see that

Using this relation we have

B(s,s) = ]

and

-2
Isl®) =
.l

Hence

1

0

v

‘A




v

CRNan A Rt v S I R C N Y e A

.........

61

Combining Theorems 3.6 with Theorems 2.1, 2.3 we see that the optimality
o} 1
constant C(H ,M,H”) is bounded uniformly over entire class of coefficients

satisfying (3.1.2). In addition, from Theorem 3.5 we see that we have good

approximation properties. Thus

(3.4.3) |u—P(§A,VA)u|H

with C depending only on Bl and Bz . Although estimates (3.2.6) and
(3.4.3) are similar, the values of the constants C in (3.2.6) and C in

(3.4.3) could be very different if a(x) is not smooth (C<< ©C).

One further point needs to be considered. We are using the bilinear

1
form B(s,v) = J as'v'dx , as in subsection 3.2, but we are now using

0
different trial and test spaces and the trial space consists of less simple
elements. However it is easily seen that the stiffness matrix is symmetric

and is as easily computed as the stiffness matrix for the standard method.

Theorem 3.7. Let Gi,...,&;_l be the standard basis for S and V

A A
and ¢i,...,®n_1 be the standard bases for § [wi(xi) = aij] . Then
— 1 — —
3.4.4 B(p, .)=ja'. 3dx=j§. "ol dx .
( ) ((pj,cpl o ®5 9 ;% 9

Proof. Again we use the relation

for any s € SA , (3.4.4) follows immediately from this.

.........
......

WL
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It should be noted that the stiffness matrix for the standard finite

element method discussed in Subsection 3.2 is

1
— v
. @, dx
(3.4.5) JO aJ ¢J ?y

where

(3.4.6) a, = —d

Since the load vector (the right hand side in the discretized problem) is
the same in the standard method as in the method discussed in this sub-
section, we see that the methods differ only in the occurrence of a. or

aj , defined in (3.4.2) and (3.4.6), respectively in the stiffness matrices,
defined in (3.4.4) and (3.4.5), respectively. Obviously Qj and a, are
very close when a(x) is nearly constant but they can be very different
when a(x) 1is rapidly changing. This shows that the results obtained by
the standard method and the third method could be very different, the third
method performing equally well for problems with smooth coefficieﬁts and
strikingly bettér for problems with rough coefficients. The analysis here
has been for the H1 norm. We remark that similar results hold for the L2—

norm. Let us also remark that the third method can be extended to equations

with b # 0 so as to preserve its good properties. For further results

see [4].
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4. Conclusions Regarding the Selection of Finite Element Methods

4.1. Introduction

As we have stated in the Introduction (Section 1) and have shown in
the previous Sections, there are many finite element methods which can be
considered for any specific problem. In this section we discuss the applica-
tion of the ideas elaborated on above to the rational selection or design of

effective methods.

4.2, Definitions of the Various Types of Variational Methods

It is essential to clarify as much as possible the aim of an engineering
computation, the set of possible solutions, the environment in which the
computations are to be made, and the various types of computational procedures
actually in use in computational engineering. Toward this end we have intro-
duced the notions of simple variational, variational, directed variational,
and computational variational methods. Nearly all of the computational
procedu. »s used in practice fall within this framework. We mention here the
h-version and the p-version of the finite element method, displacement and
mixed methods, various adaptive approaches, etc. The examples discussed in
Sections 2 and 3 show that the same computational procedure can be viewed as
different directed variational or computational variational methods, the dif-
ference being related to the use of different norms with which to measure the
error. We have seen that the different methods have significantly different
behavior. It appears that without precise definitions of the various types of
variational methods, a careful discussion of finite eclement methods leading to a

rational choice of a method for a specific problem would not be possible.

4.3 Approximability and Optimality

The notions of approximability and optimality are two central ideas to

be considered in the comparison of finite element methods. Clearly the
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trial space should be tailored as well as possible to the class of possible
solutions. The approximability constant 2(u,S$,X) 1is a measure of how well
this has been done. The trial spaces introduced in Subsections 3.3 and 3.4
are obviously preferable to the standard polynomial spaces.

The test space should be selected so as to lead to a small optimality
constant C(u,M,X) and so as to lead to computational simplicity. The
optimality constant is a measure of how well the approximate solution performs
in comparison with the best possible approximation. In Example 2.2.2 with
X = X, = L. we have seen that for the solution u s C(G,Mn,Xz) ~ vn and

2 2

Z(E;Sn ’XZ) m-% . Thus the error satisfies [G—unlxz ~ 1//n , i.e., the
good approximability properties of Sn are partially eroded because of the
large optimality constant. We have also seen that u leads to the largest
optimality constant. The method does, however, converge.

The second and third methods treated in Section 3 both have small
optimality constants, but the third method is much easier to implement than
the second.

The selection of the test spaces heavily influences the set of solutions
which are perfect, i.e., the set of solutioﬁs for which the method works well,
assuming good approximability. Sometimes all 'reasonable" solutions are
perfect, while the imperfect solutions are '"wild". Example 2.3.3 is an
illustration of this. In other problems reasonable solutions could be very
imperfect. Example 2.2.1 is an illustration of this. That example also
clearly shows the effect of the choice of the test space on the class of
perfect solutions. In any case, the method which is perfect for the largest
class of solutions is preferable.

If a large class of solutions are imperfect and vhe optimality constant
+ 40 as an n > += (n being the number of degrees of freedcm, say), then

a method with a smaller C is preferable to one with a large € . The
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standard finite element method (cf. the discussion in Subsection 3.2 in the
constant coefficient case) and the method discussed in Example 2.2.2, when
considered in connection with X = L2 s can be compared in this way. In the
first case we get C(ﬁl,MA,Lz) = o yhile in the second case C(LZ’Mn’LZ) ~ Vo .
In many situations, rigorous estimates of the optimality constant are
not available and judgments concerning choice of methods must be based on
computational experience. In these situations, one must attempt to gain
insight on the class of perfect solutions from the computational experience.
Nevertheless, we have to be aware that there is a possibility that only
perfect solutions will be tested and the conclusions could be misleading.
Approximability and optimality together influence the performance of
the method. A method could have a deteriorating optimality constant and
still give reasonably good accuracy if the approximability is sufficiently
good to offset the lack of optimality. Thus we are interested in the set of
solutions for which the method converges as well as the set of perfect
solutions.
Examples 2.2.1 and 2.3.3 clearly illustrate the influence of the choice
of trial and test space on optimality. 1If the "major part” of the bilinear
form B is symmetric (cf. Example 2.2.1 for |A|>1), then using the same
space for the trial and test space is often advisable. If the "major part"
of B is nonsymmetric (cf. Example 2.2.1 for |A]|<l and Example 2.3.3),

then it is often useful to consider different trial and test spaces.

4.4. Stability and the Stability Condition

The stability constant should be viewed as a Lool to be used in the
analysis of optimality. C(u,M,X) and D(u,M,X) , and also C(H,M,X) and
D(H,M,X) , are closely related, as shown in Theorem 2.1. The counstant y(S,V)

is in turn used to estimate the stability constant, as shown in Theorem 2.3.
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We note that vY(S,V) does not depend on the exact solution u  and thus that
an analysis of stability or optimality based on an estimate for vy(5,V) nust
concentrate on "worst' possible cases. The stability condition (2.3.17) is
necessary in the sense that if it is violated, then the method must diverge
for at least one solution, as shown by Theorems 2.2 and 2,5. Nevertheless,
a method can violate this condition and still perform well for a large class
of solutions.

Recently there have been statements in the literature to the effect
that certain methods perform well computationally even though the stability
condition (also sometimes called the inf-sup, LBB, or BB conditions) is
violated. This occurrence can be explained by noting that in the computations
only perfect solutions were considered. These particular solutions may have
been considered partly on the basis of physical insight, but partly by
accident. Thus we see that a detailed analysis of the structure of the set
of perfect solutions is highly desirable. Certainly formal insistance that
the stability condition is satisfied is inappropriate.

We see from Theorem 2.1, that the method discussed ‘n Example 2.2.2,
when considered in connection with the Lz—norm (case (b)), does not satisfy
the stability condition, since the optimality constant -« as n* ., Still,

on the basis of experimental evidence, it is likely that the method would

' solutions would be considered. A

perform well because only ''reasonable’
similar situation occurs when we consider the performance of the standard
finite element method in the L2~norm or when considering the second choice

of spaces in Example 2.3.3. 1In contrast it is very likely that experimentally

one would generally see that the method discussed in the Example 2.2.1 has a

serious deficiency when |A[<1 .
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